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Abstract  

We study the vortex equations on parabolic bundles over a Riemann surface and prove a Hitchin- 
Kobayashi-type correspondence relating the existence of solutions to a certain stability condition. 
This is achieved by translating our problem into a four-dimensional one, via dimensional reduction 
arguments. In return we obtain examples of instantons of infinite energy. 
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1. I n t r o d u c t i o n  

Given a holomorphic vector bundle over a compact Riemann surface X there is a very 

natural condition for a Hermitian metric on it, namely that of being projectively flat. By 

a famous theorem of Narasimhan and Seshadri [NS] (see also [AB,D1]) the existence of 

such a metric is equivalent to the stability of the vector bundle (in the sense of Mumford). 

In higher dimensions projective flatness leads to an overdetermined equation and one needs 

to consider a weaker condition known as the Hermi t ian-Eins te in  condition (on a Riemann 

surface both conditions are equivalent). To write this equation one needs to choose a Kahler 

metric on the manifold. A Hermitian metric on the bundle is then called Hermitian-Einstein 
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if the contraction of  its curvature with the K~ihler form is a constant multiple of  the iden- 

tity. The Hitchin-Kobayashi correspondence, proved by Donaldson, Uhlenbeck and Yau 

establishes that the existence of a Hermitian-Einstein metric is equivalent to the stability 

of  the bundle---condition which in higher dimensions requires a K~ihler metric in order to 

be defined. 

The theorem of Narasimhan and Seshadri was generalized by Mehta and Seshadri [MS] 

(see also [Bil,Bi2] for the formulation of this theorem that we shall use in this paper) to 

vector bundles with a parabolic structure. A parabolic structure on a vector bundle con- 

sists on a finite set of points on the Riemann surface, and filtrations by vector spaces 

of  the fibres at the points, together with some real numbers called weights. Seshadri in- 

troduced a notion of stability for bundles with such structure. As in the usual case, this 

condition corresponds to the existence of  a projectively flat metric, but how adapted in 

some precise sense to the parabolic structure, and whose connection is singular along 

the parabolic points. To define a parabolic structure in higher dimensions one replaces 

the points by smooth divisors and the filtrations by vector spaces by filtrations by vec- 

tor bundles for the restriction of the vector bundle on the divisors. A Hitchin-Kobayashi 

correspondence for parabolic bundles over projective surfaces has been established by 

Biquard [Bi4]. 

In a different direction, a Hitchin-Kobayashi-type correspondence has been studied by 

Bradlow and Garcfa-Prada forpairs consisting of  a vector bundle and a holomorphic section 

[B 1,B2,GPI,GP2] and more generally for triples consisting of two vector bundles and a 

morphism between them [GP3,BGP]. In this case one defines a notion of stability which 

involves a real parameter analogous to the weights appearing in the parabolic structure. 

This condition is equivalent to the existence of a metric on the bundle satisfying, in the 

case of  a pair, an equation known as the vortex equation, and in the case of a triple, a 

pair of equations--the so-called coupled vortex equations--for metrics on both bundles. 

These equations have terms involving the section and the parameter, in addition to the 

Hermitian-Einstein term. 

In this paper we shall combine the above two types of  additional structure to study the 

existence of  metrics satisfying a generalization of the coupled vortex equations--that we 

shall call parabolic vortex equations--on two parabolic bundles over a Riemann surface 

linked by a map. We shall deal with two cases here. In the first one the map will be a 

morphism of parabolic bundles; we shall call these triples parabolic triples. In this case, the 

curvatures of  the solutions are bounded. But for parabolic bundles it is natural to consider 
L l curvatures. As the equations have a linear term in the curvature and a quadratic term 

in the morphism, one can solve the problem with an L 2 morphism. This amounts to con- 

sidering a meromorphic morphism with simple poles at the parabolic points, with the extra 
condition that the residues respect the parabolic structure strictly. The triples involved in this 

second case, which include of  course the first ones, will be called meromorphic parabolic 
triples. 

Putting both structures together we can define a notion of  stability for meromorphic 
parabolic triples and show that this is equivalent to the existence of  solutions to the parabolic 
vortex equations. The proof is based on a modification to the parabolic case of  the dimensional 
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reduction arguments, used in [BGP] to prove existence for the ordinary coupled vortex equa- 

tions for a holomorphic triple. 

The Hitchin-Kobayashi correspondence for triples is in fact closely related to the usual 

Hitchin-Kobayashi correspondence. Namely, to a holomorphic triple over a Riemann 

surface X one can canonically associate a holomorphic vector bundle over X × pl .  The 

stability of  the triple turns out to be equivalent to the stability of  this bundle. The parameter 

involved in the notion of  stability for a triple is encoded in the Kahler metric on X x pI ,  

chosen to define stability. This vector bundle comes equipped with an action of  SU(2), 

lifted from that on pl .  A Hermitian-Einstein metric is in fact SU(2)-invariant and is easily 

shown to be in correspondence with metrics on the bundles over X satisfying the coupled 

vortex equations. 

In the case of  a parabolic triple we can show that the corresponding bundle on X x pl  

admits a unique parabolic structure which is in fact SU (2)-invariant. As in the non-parabolic 

case the existence of an SU (2)-invariant Hermitian-Einstein metric adapted to the parabolic 

structure on the parabolic bundle over X x PJ is equivalent to the existence of  metrics 

adapted to the parabolic structures on the bundles over X satisfying the parabolic vortex 

equations. Our parabolic bundle over X x pl  satisfies the hypotheses of  the theorem of 

Biquard [Bi4] and hence the existence of  a Hermitian-Einstein metric is equivalent to 

the parabolic stability of the bundle. In fact by SU(2)-invariance it is enough to check 

the stability condition for SU(2)-invariant subsheaves. We prove our theorem by showing 

that this parabolic SU(2)-invariant stability is equivalent to the parabolic stability of  the 

parabolic triple. 

The proof in the meromorphic case is a bit more involved, due to the fact that we can- 

not associate to the triple a parabolic bundle over X x pl .  Of course if the morphism is 

holomorphic (with no extra assumption) we can still associate a holomorphic bundle over 

X x PJ to the triple, but this does not have a parabolic structure unless the morphism is 

a morphism of parabolic bundles, i.e. unless we are in the case considered above. How- 
ever, in the meromorphic case outside of  the parabolic points, the triple is holomorphic 

and we can still associate a holomorphic bundle over the non-compact manifold obtained 

from X × pl  by removing the product of  the set of  parabolic points of  X with pI .  Doing 

some extra analysis one can apply a theorem of Simpson [Si] from which we deduce our 

theorem. 

As a corollary of  the proof we get examples of anti-self-dual connections on the complex 

surface X × pt  minus a divisor, with non-trivial monodromy around the divisor and infinite 
energy (see Theorem 5.3). Although in the general situation finite energy anti-self-dual 
connections are related to parabolic bundles [Bi4], the question of  whether infinite energy 

instantons correspond to some algebraic objects is still open. 
The paper is organized as follows. In Section 2 we review the basic definitions of  

parabolic bundle and metric adapted to the parabolic structure. In Section 3 we intro- 
duce the meromorphic parabolic triples, a notion of  stability for them, as well as the 
parabolic vortex equations and establish the correspondence theorem. In Section 4 we prove 
this theorem when the morphism is parabolic. In Section 5 we prove the theorem in the 
meromorphic case. 
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2. Preliminaries on parabolic bundles 
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We shall start by recalling some well-known facts about parabolic bundles. 

Let X be a Riemann surface and S be a finite set of points of X. Let E --~ 

holomorphic bundle. 

X b e a  

Definition 2.1. A parabolic structure over S for the bundle E consists of a decreasing 

left-continuous filtration (E~)0<,~<l of Ep Such that E ° = Ep and E1 = {0} for each 

P E S .  

There are of course only finitely many jumps in the dimension of E ~ - -  they occur at 

the weights of E at P. If  a is a weight, its multiplicity is the dimension of Gr'~Ep = 
Ep/Ep (e > O ) . L e t  

Gr Ep = @~Gra Ep 

and (~p be the endomorphism of Gr Ep acting by multiplication by a on Gr~Ep. 

Remarks.  
(1) Let 0 < oq < . . .  < an < 1 be the weights of E at P. The parabolic structure can 

alternatively be defined by giving these weights and the filtration 

e p  = 2 0 .  

(2) We will also need to consider the case when X is a complex surface. In this situation S 

will be a finite set of  smooth disjoint divisors and the definition of  a parabolic structure 

will be the same except that the E~ need to be replaced by holomorphic subbundles of  

EID, where D E S. 
Let E and E '  be holomorphic bundles on X with parabolic structures over S. A 

morphism q~ : E ~ E '  is a holomorphic morphism such that if P 6 S and 0 < ot < 1, 

then 

c . 

The morphism is strict if for every ~ > 0 

¢,p(E~) C E~, a+' • 

If E' C E is a holomorphic subbundle, one obtains a parabolic structure over S for E' 

by writing 

and similarly for E/E'. 

2.1. Adapted metrics 

Let us fix a smooth metric on the Riemann surface X. 
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Theorem 2.2 ([Bi l,Bi3]). There is an equivalence of  categories between 

(1) holomorphic bundles in X with parabolic structure on S and 

(2) holomorphic Hermitian bundles on X - S with L p curvature for  some p > 1, where 

the morphisms are holomorphic bounded morphisms on X - S. 

We shall describe briefly this correspondence. 

Let us consider first a holomorphic parabolic bundle E. Let P E S and z be a local 

coordinate on X at P.  Let (si) be a local basis of  holomorphic sections of  E such that E~o 

is generated by (si(P))i>_r-dim E~+I (r = rank E).  Such a basis will be called an adapted 

Cti p0~i~-E We define (locally) basis. Let 0/i be the weight such that si (P)  E E p ,  but si (P) ~( - p  • 

a flat metric on E by 

ho(z) = ".. . (1) 

I,~120tr 

We do the same around each point of S and extend h0 in a C ~ manner over X - S. We 

get in this way a so-called adapted metric ho on E I x - s ,  which will be the desired metric 

corresponding to E. 

Conversely, let us consider a holomorphic Hermitian bundle (E,  f • I) on X - S, with L p 

curvature for some p > 1. One can show then that there is an extension of E to a unique 

parabolic bundle over X, such that 

E~ = {s(P),  s: local holomorphic section with Is(z)l = O(IzlU)}. 

~'~+~ if and only if Furthermore, one has s ( P ) ~ E p and s ( P ) ~ - p 

Is(z)l ~ Izl ~, 

i.e. the two quotients are bounded. 

R e m a r k .  Theorem 2.2 is true also for complex surfaces [Bi4], provided that the curva- 

ture is now in L p for some p > 2, but the construction of an adapted metric is more 

complicated. 

Proposition 2.3. Let E be a holomorphic parabolic bundle on the compact Riemann sur- 

face X and h be an adapted metric on X - S (i.e. h corresponds to E via Theorem 2.2), 

then 

1 
{ Tr(Fh) : deg(E)  + ~ Tr(otp) .  

27ri J PES 
X - S  

This number is called the parabolic degree o f  E and will be denoted by pardeg(E).  
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Remark. In the case of a compact complex Kahler surface (X, w), one has the formula 

(for an adapted metric h) 

pardeg~o (E) -- 
1 f 

1 Tr(Fh)/x oo = deg,o(E) + ~ Tr(oto)([w], [DI) . 
2:ri J D6S X-S  

2.2. Connections and gauge transformations 

This section is special to Riemann surfaces. If h0 is an adapted metric on a holomorphic 

parabolic bundle E and h is another adapted metric we can write 

h(x, y) = ho(gx, gy), 

where g is an h0-self-adjoint complex gauge transformation of E Ix-s.  
The fact that the metric h is adapted with curvature L p is equivalent to the fact that 

g must satisfy certain growth conditions of "weighted Sobolev" type. These conditions 

define a group ~P of complex gauge transformations. There is also a space .AP of h0- 
unitary connections with L p curvature, locally asymptotic to the metric connection of (1), 

that is 

dz 
d + o t p - - ,  

z 

or in the orthonormal basis ei = si/Iz I ~i , 

d + iue d0, 

where z = r exp(i0). 
The group G~ and its unitary subgroup G p act on .AP. If p is small enough A r,  ~p and ~ 

do not depend on any choice (in particular the choice of complementaries in the filtration) 

and they are therefore canonically attached to the parabolic structure. As in the usual case 
one has the two equivalent points of view: 

(1) (adapted) metrics on a fixed holomorphic parabolic bundle, 
(2) unitary connections (in A p) on a fixed Hermitian bundle. 

3. Parabolic triples, vortex equations and stability 

Let X be a compact Riemann surface and S be a finite set of points of X as above. 

Definition 3.1. A holomorphic triple is a triple (El,  E2, qb) consisting of two holomorphic 
vector bundles El and E2 over X and a morphism ~ : E2 ~ El. If El and E2 have 
parabolic structures over S and • is a morphism of parabolic bundles the triple (El, E2, 4 )  
is called aparabolic triple. If ~ is a meromorphic morphism with simple poles at the points 
of S, such that the residues respect the parabolic structure strictly, (El, E2, t/,) is called a 
meromorphic parabolic triple. 
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Remark .  Note that if the meromorphic morphism is in fact holomorphic, then the residue is 

zero and therefore it trivially respects the parabolic structure. So, in particular any parabolic 
triple is a meromorphic parabolic triple. 

Let us consider a smooth metric on X with Kiihler form o). Let (El ,  E2, • ) be a meromorphic 

parabolic triple. We want to study the existence of Hermitian metrics h l and h2 on El and 
E2, respectively, satisfying 

iAFh~ + ~c19" = 2rrrllEi, iAFh2 - q~*qb = 27rr21E2, (2) 

where A is contraction with the K~ihler form. q~* is the adjoint of  • with respect to hi and 

h2, IE~ and le2 are the identity endomorphisms of El and E2, respectively, and rl and r2 
are real parameters. Of  course these equations are defined only on X - S. 

The parameters rl and r2 are not independent, but satisfy the linear relation 

rl rank El + r2 rank E2 = pardeg(El)  + pardeg(E2), (3) 

obtained by adding the traces of  both equations and integrating (note that Tr q ~ *  = 

Tr q~* q~). 
When (Em, E2, q~) is a holomorphic triple (i.e. Ej and E2 do not have parabolic structures) 

and hj and h2 are ordinary Hermitian metrics, Eqs. (2) are the so-called coupled vortex 

equations introduced in [GP3,BGP]. We shall call our equations parabolic vortex equations. 

As in the ordinary vortex equations, the existence of solutions to the parabolic ones is 
governed by a stability-type condition for the triple. To define this stability criterium we 

need to consider "subobjects" of  a meromorphic parabolic triple. Let T = (El ,  E2, q~) be 
a meromorphic parabolic triple. A subtriple of T is a meromorphic parabolic triple T '  ---- 

(E 1 , '  E 2,' @'), where Ej' C El and E 2' C E2 are coherent subsheaves, and @I = ~IE2, i.e. 
we have the commutative diagram 

q~ 
E2 -----+ El 

t t 
E'-, ~' ' E l 

! ! 
If E '  I = 0 and E~ = 0 or E 1 = E1 and E 2 = E 2 ,  the corresponding subtriples are called 
trivial. 

! ! 
Definition 3.2. Let cr be a real parameter. For any parabolic subtriple T '  = (Ej ,  E 2, q)1) 
we define the parabolic a-degree and parabolic ~r-slope as 

pardeg,, (T ')  = pardeg(E'  1 ~ E~) + a rank E~, (4) 

and 

/za (T')  = pardega (T ' )  
rank E '  1 + rank E~" (5) 
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The meromorphic parabolic triple is called a-s table  if for all non-trivial subtriples T t C 

T, we have 

# o ( T ' )  < #~ (T) .  (6) 

This generalizes the definition of stability for holomorphic triples given in [BGP]. 

Remarks. 
(1) Given coherent subsheaves E '  1 C El and E~ C E2, they inherit, as explained in 

Section 2, parabolic structures, becoming parabolic subsheaves. On the other hand if 
q~ (E~) C E '  1 , taking q~' = q~IE~, (E'l, E~, ~ ' )  becomes a parabolic subtriple. One can 
easily see that in order for T to be parabolic a-s table  it is enough to check (6) for the 

subtriples appearing in this way. 

(2) As usual it will suffice to check (6) for saturated subtriples, i.e. those in which E '  1 and 
! 

E 2 are actually subbundles. 

Definition 3.3. We say the triple T = (El ,  E2, q~) is decomposable if there are direct 
n n n 

sum decompositions El = ~ i = l  Eli, E2 = ~ i = l  E2i, and q~ = ~) i= l  q~i, such that 
Ti = (El/ ,  E2i, dPi) is a subtriple of  T. We adopt the convention that if E2i = 0 or Eli = 0 

= ~ i : 1  Ti. for some i, then ¢~i is the zero map. We write T n 

If T is not decomposable, we say T is indecomposable. 

Our main objective in this paper will be to prove the following result. 

Theorem 3.4. Let T = (El ,  E2, q~) be an indecomposable meromorphicparabolic triple. 

Let rl and r2 satisfy (3), and let cr -- rl - r2. Then E1 and E2 admit Hermitian metrics, 

adapted to the parabolic structures, satisfying (2) i f  and only if T is a-stable. 

4. Proof of Theorem 3.4: • parabolic 

We start by proving Theorem 3.4 when q~ is a holomorphic parabolic morphism. The 

general case is more involved and will be dealt with later on. Our proof is based on dimen- 
sional reduction methods. These consist, roughly speaking, in associating to a parabolic 
triple over X an equivariant parabolic bundle over X x p I .  The existence of solutions to 
Eqs. (2) translates into the existence of a Hermitian-Einstein metric on this bundle, for 
which we can apply a theorem of Biquard [Bi4]. The main ideas are an adaptation to the 
parabolic case of  those used to prove existence of solutions to the coupled vortex equations 
for ordinary holomorphic triples (cf. [BGP]). 

Proposition 4.1 ([BGP, Proposition 3.9]). There is a one-to-one correspondence between 

holomorphic triples (El ,  E2, q~) over X and extensions over X x pI  of the form 

0 > p ' E l  > F ~ p*E2®q*O(2)  > 0, (7) 

where p and q are the projections from X x p1 to the first and second factors, respectively. 
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Proof The extensions over X x pl  of  the form (7) are parametrized by 

HJ(X x PJ, p*(El ® E~) ® q * O ( - 2 ) ) ;  

but this is isomorphic to H°(X,  E~ ® E~) ® H l ( p l  0 ( - 2 ) )  -~ H°(X,  El ® E~), by means 

of the Kfinneth formula, the fact that H ° ( P  l, 0 ( - 2 ) )  = 0 and 

H I ( P  l, 0 ( - 2 ) )  ~ H ° ( P  j, O)* -~ C .  

Therefore after fixing an element in H l (pl ,  0 ( - 2 ) ) ,  the homomorphism q, can be identified 

with the extension class defining F. [] 

Let SU(2) act on X x pI ,  trivially on X and in the standard way on p1. This action lifts 

to holomorphic actions on p 'E l  and p'E2 ® q*O(2), and since the action of  SU(2) on 

the extension class is trivial, one can lift the action to F,  which becomes in this way an 

SU(2)-equivariant holomorphic bundle. If now E1 and E2 have parabolic structures it is 

natural to ask whether this equivariant bundle admits a parabolic structure or not. It turns 

out that the condition for this to happen is that q~ be a morphism of parabolic bundles, as 

one would naturally expect. 

Let E be a holomorphic vector bundle over X, with a parabolic structure over a set of 

points S C X. It is clear that the parabolic structure on E induces a parabolic structure on 

p*E over D = S x pl  C X x pl .  The filtration for each x ~ S 

E px = FI(E) 3 . . .  D Fn(E) D 0 

induces the filtration 

p*e Io = D . . .  D • 0, 

where Dx = {x} x p1, and di = dim Fi(E). We take for this filtration the same weights 

as the ones of the filtration of E Ix. Note that since D is SU(2)-invariant the parabolic 

structure on p*E will be equivariant. 
Let Ej and E2 be holomorphic vector bundles with a parabolic structure over S, then 

p* E r and p ' E 2  have equivariant parabolic structures. Since tensoring with a line bundle 

preserves the parabolic structure, p 'E2 ® q*O(2) has also a parabolic structure, which is 
in fact SU(2)-equivariant since q*O(2) is an SU(2)-equivariant line bundle. We want to 

characterize now the extensions (7) so that F admits a parabolic structure, inducing the 
starting parabolic structures on p'E1 and p'E2 ® q*O(2). In contrast with what happens 
on a Riemann surface, in higher dimensions there is an obstruction for the existence of  such 
parabolic structure. To explain this we shall digress for a moment to study the problem in 

more generality. 
Let M be a compact complex manifold and D be an effective divisor. Let Fj and F2 be 

holomorphic vector bundles with a parabolic structure over D. We want to study the group 
ParExt(F2, Fi ) of parabolic extensions, i.e. the extensions 

0 > FI ~ F ~ F2 > 0, (8) 
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such that F has a parabolic structure over D inducing the starting parabolic structures on 

FI and F2. Let 79arT-lom(F2, Fl) be the sheaf of parabolic morphisms from F2 to F1, i.e. 

the subsheaf of 7Yom(F2, F1 ) defined for every open U C M by 

~arT-Lom(F2, FI)(U) = {parabolic morphisms FzIu ) F11u}- 

Note that for every open set U C M, the parabolic structure over D of a bundle over M 
induces a parabolic structure over D A U on the restriction of this bundle to U. 

Lemma  4.2. ParExt(F2, F1) -~ H 1 (79arHom(F2, FI)). 

Proof It is easy to see that the functor 79arHom(F2, .) is exact (not only left exact) for 

parabolic bundles. This almost immediately implies that the group Ex0 in the parabolic 

category is the above cohomology group. 
More precisely, given an extension 

0-----+ FI ) F ) F2 ~0, 

one has the exact the sequence of sheaves 

0 ~ 79ar~om(F2, FI) ) 79arT-[om(F2, F) ------> 79arTYom(F2, F2) ) 0 

and the image of the identity by the morphism 

H°(ParT-tom(F2, F2)) ) Hl(79arT-[om(F2, FI)) 

classifies the extension. [] 

Let Q be the quotient of ~ o m  (F2, Fl ) by 79arT-(om(F2, Fl). It is clear that Q is a sheaf 
supported at D. Associated to 

0 ~ 79ar~om(F2, FI) 

we have the long exact sequence 

0 ) H°(79ar~om(F2, FI)) 
Hl(79ar~om(F2, El)) 

7-[om(F2, F1) ) Q ----+ 0 (9) 

) H°(~om(F2,  FI)) ) H°(Q) (1o) 
) Hl(7-tom(F2, F1)) > H I ( Q )  ) .  

Thus, the obstruction for F in (8) to admit a parabolic structure is determined by an 
element of H l (Q). More precisely: 

Proposition 4.3. F admits a parabolic structure if the image of the extension (8) in H J (Q) 
is zero. The different parabolic structures that F might have are parametrized by the cokernel 
of H°(7-(om(F2, El)) ~ H°(Q). 

Remark.  If M is a Riemann surface, then Q is supported in a finite set of points and hence 
H1(Q) = 0. Thus every extension F admits a parabolic structure (see [MS]). 
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Let us come back to our problem and study the group of  parabolic extensions ParExt (p* E2 ® 

q*O(2), p 'E1 ) .  

Proposition 4.4. H l (79arT-lom(p* E2 ® q*O(2), p'El))  injects into H I (7-[om(p* E2 ® 
q*O(2),  p 'E l  )), and is isomorphic to H°(X,  7~arT-lom(E2, El )). 

Proof We consider the short exact sequence (9) specialized to our situation. Q is supported 

at D = S × pl  C X × pI .  Since Q c ~)7-[omox(O(2)rz,or~), where Dx = {x} x pI ,  

rl = rank Et and r2 = rank E2, then H°(Q) = 0 and from (10) we obtain 

0 ~ Hl(79arT-[om(p*E2 ® q*O(2), p ' E l ) )  

HJ(7-lom(p*E2 ®q*O(2) ,  p 'E l ) )  , HI(Q).  

To prove the second assertion in the proposition it suffices to observe that by SU(2)- 

equivariance [] 

Lemma 4.5. 

79ar~om(p*E2 ® q*O(2), p ' E l )  ~ p*79ar~om(E2, El)  ® q*7-[om(O(2), 0) .  

Hence applying the Kiinneth formula as in Proposition 4.1, we obtain 

H l (T'ar~om(p*E2 ® q*O(2),  p ' E l ) )  -~ H°(79arT-[om(E2, El)).  

We have proved therefore that if (El,  E2, 4 )  is a parabolic triple with qo a morphism 

of parabolic bundles, the associated vector bundle over X × pl admits one, and only one, 

SU(2)-equivariant parabolic structure. We want to relate now the parabolic stability of 

(Ej, E2, 4 )  to the parabolic stability of this bundle. To do this we need to consider a 

K~ihler metric on X × P~. We shall take the product of ½or times a metric on X with the 

Fubini-Study metric on pl .  We shall normalize the volume of  both X and pl  to one. The 

K/ihler form of this metric depending on cr is 

wa = ½~(p*a)x)@ q*(-o W . (11) 

Since the vector bundle F is SU(2)-equivariant we can consider the slightly weaker condi- 

tion of invariant stability. This is like ordinary stability but the numerical condition on the 
slopes has to be satisfied only for SU(2)-invariant subsbeaves of F. 

Proposition 4.6. Let T = (Ej, E2, 4) be a parabolic triple over X and let F be the 
parabolic bundle over X × pI associated to T. Then T is parabolic a-stable if and only if 
F is SU (2)-invariant parabolic stable with respect to w~. 

Proof It is a straightforward generalization of the non-parabolic case (cf. [BGP]). We first 
note that for the statement to make sense we need ~r > 0. This is not assumed in the 
definition of cr-stable but can in fact be obtained as a consequence of it. [] 
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Lemma 4.7. Let T = (El, E2, ~ )  be a a-stable parabolic triple, then cr > O. 
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Proof  It is obtained by combining (6) for T( = (Im q~, 0, 0) and T~ = (El,  Ker ~ ,  ~ ) ,  
and the observation that Ker q~ and Im • fit in the exact sequence 

0 ~ Ker • ) E2 ) Im • ~ 0. [] 

Every subsheaf F t C F, and in particular every SU(2)-invariant subsheaf, inherits a 

parabolic structure from the parabolic structure of F. We want to prove that for every 

SU(2)-invariant subsheaf F'  C F 

# a ( F ' )  < # a ( F )  

is equivalent to the parabolic ~r-stability of T, where/z,~ is the parabolic slope with respect 

to o9o. As shown in [BGP] there is a one-to-one correspondence between SU(2)-invariant 
! F ! subsheaves F r C F and holomorphic subtriples T r (E,l, E2 ' q~r). is an extension 

which fits in the following commutative diagram: 

0 ~ p ' E !  ~ F ~ p * E 2 ® q * O ( 2 )  ) 0 

0 , p*E '  1 , F '  ~ p*E~2 ®q*O(2)  , 0. 

An easy calculation shows that 

pardegcr (F ' )  = pardeg~r (p* El ) + pardeg~ (p* E~ ® q*O(2)) 
! 

= pardeg Erl + pardeg E~ + (r rank E 2, 

since ([too], [Dx]) = 1, where Dx = {x} × pI .  Hence/z~(F ' )  = / z ~ ( T  r) completing the 
proof. 

Proof  o f  Theorem 3.4 (parabolic case). The indecomposability of T = (El,  E2, q~) is 
equivalent to the indecomposability, as an SU (2)-equivariant bundle, of the parabolic bundle 

F associated to T. By Proposition 4.6 the parabolic ~r-stability of T is equivalent to the 
SU (2)-invariant parabolic stability of F with respect to o9,,. We can now apply an equivariant 
version of the following theorem of Biquard. 

Theorem 4.8 ([Bi4, Th6or~me 1.2]). Let M be a projective surface, co a Kiihler form and 

D C M a smooth divisor. Then a stable parabolic bundle over M admits a unique (up to 

a constant) adapted Hermitian-Einstein metric (the same is true withfinitely many smooth 

disjoint divisors). 

Hence the SU(2)-invariant stability of F is equivalent to the existence of an SU(2)- 
invariant Hermitian-Einstein metric h on F adapted to the parabolic structure. This metric 
is of the form 

, t 
h = p ' h !  ~ p * h 2 ® q  h 2 
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for metrics h I and h2 on El and E2, respectively, adapted to the parabolic structures, and h i, 

an SU(2)-invariant metric on 0 (2 )  (see [GP3]) for similar statement in the non-parabolic 

case). Taking a = ri - r2 for rl and r2 related by (3), one can see, using the same arguments 

of [BGP], that h is Hermitian-Einstein with respect to wa if and only if h I and h2 satisfy (2). 

5. P r o o f  o f  T h e o r e m  3.4:  • m e r o m o r p h i c  

When q~ is meromorphic, the proof is more difficult, since there is no interpretation of  

the meromorphic triple (El,  E2, ~ )  as a parabolic bundle over X × pl .  Instead of  using 

[Bi4] we have to invoke directly Simpson's theorem [Si]. We begin by constructing an 

approximation to the solution. 

P r o p o s i t i o n  5.1. Let (El,  E2, qb) be a meromorphic parabolic triple. Then there exist 

adapted metrics h l and h2 on El and E2 such that 

iAFhl + dpclg* and iAFh2 - ~ * ~  

are bounded on X - S. 

Proo f  It is a local problem near a marked point P with local coordinate z. Let (sj) and (ti) 

be local basis of  holomorphic sections of  E1 and E2, which are adapted to the parabolic 

structure. As a first approximation, one can look at the flat metrics in El and E2 as in (1), 

H o =  ".. , K o =  ".. , 

]Zl2°trl IZl2flr2 

where rl -- rank El and r2 = rank E2. In the orthonormal basis ej = sj/lzl~J and fi = 
ti/lz[ Hi, one has 

= (~/]zlHi-uJ)i , j  

with: 

- if fli > otj then q~/is meromorphic with simple pole at 0, 

- if fli <_ otj then qs/ is  holomorphic, 

so that in any case [q~[ = O(Izl-J+~). 

Remark .  In the case of a parabolic triple, one gets 4~/ holomorphic for fli >-- t~j and q~/ 

holomorphic with q~/(0) = 0 for fli < otj, so that 4~ is bounded and/4o and Ko are the 

desired metrics. 

Now we try to find H = Hoe u and K --- Koe v with u and v self-adjoint endomorphisms 
of  El and E2, going to 0 when z ~ 0. Write 

ore dz ~ = ~  otp d~ 0~ = 0 + - - - - ,  
2 ~ ' 2 z 
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we then want 

Q1 (u, v) = iAO,(e-U Oc~e ~) + ~ e - ~  clg* e" , 

Q2(u, v) = iAO~(e-VO~e ~) - e-~qS*e~q~ 

to be bounded (~* is the adjoint with respect to the fixed metrics Ho and Ko). The principal 

terms in the linearizations of Ql and Q2 are, respectively (z = r exp(i0)),  

iAOc~Oc~u = ( - - ( r a r )  2 

iAO~O~v = ( - ( rOr  ) 2 

We use now the fact that the 

letting s = - In r.  If a is a 

Aa =--(rOr)  2 -- (00 

- (0o q- iotp)2)u Aidz  m d~ 
2r 2 

Ai dz m d~ 
- (00 + iflp)2)v 2r 2 

unit disk is conformally equivalent to the half-cylinder R+ × S 1 , 

scalar, the operator 

-t- iot) 2 = - 0 2  - (00 q- i~) 2 

on the whole cylinder R × S I is an isomorphism between weighted H61der spaces (see [MP]), 

A,~: C 2+~ --+ C ~ ,  

if 8 + ct ¢ Z and 8 - c~ ¢ Z (the space Cff is the space of  functions f such that e~Sf ~ C o). 
I f g  6 C~(R+ x Sl ) ,  one can extend smoothly g in C~°(R x S 1) with compact  support 

2+0 S 1 - 2 + o r b  i n R _  x S  1 and s o l v e A ~ f  = g w i t h f  ~ C~ ( R ×  ) or at least f ~ C~, ~ . , , x S  t ) 

for all 8' < 8 if 8 is critical (i.e. 8 + c~ or 8 - c~ ~ Z).  Restricting f to R+ x S 1, we get a 
right inverse for A~, sending C~(R+ × S 1) to C2+0(R+ × S 1) or at least Cff+n(R+ × S 1) 

for all 8' < 8. 

Call ( the C ~ function Ai  dz A 1 dL We use the previous considerations to solve 

r 2 
(--02 -- (O0 + i~p)2)u0 = ----dpdp*,  (--02 -- (O0 + iflp)2)oO = - - r2  q~*~ . 

( ¢ 

The most singular terms in ~ *  and q~*~ are equivalent to r -2+~ (8 > 0), so one can find 
-2+7 (perhaps in -2+0 for all 8' uo and vo in c'~ c~, < 8, but we will from now on forget these 

• - 2 + 0  2+0 details) .ThenQl(uo,  vo)andQ2(uo,  vo)arenowmc~+~oinsteadofC ~ fo rsomeeo  > 0. 

The solutions u and v are obtained by a finite process of  iteration, as finite sums 

U = U 0 - [ - U l  - [ - . , .  , U = U0-1--UI - k - . , .  

To write the next step we look at u = uo + u I and v = vo + 1)l and write the principal terms 

of Q1 and Q2, using the equations satisfied by uo and vo: 

iAOc~Oc~ut ÷ terms in uo, vo with weight S + E0, 

iAO~O~vl + t e r m s i n u o ,  vo with weight 8 +Eo.  

-2+o such that both terms are zero. Hence Q1 (u, v) Therefore one can find ul and vl in t;a+~o 

and Qz(u,  v) are in C~+~o+~ ' . 
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At each step, we get a weight Ei which is easily seen to be bounded from below in terms 

of  the weights ~j and/3i, so, in a finite number of  steps, we obtain Qj (u, v) and Q2(u, v) 

bounded. 

Proof o f  Theorem 3.4. In the case of a meromorphic parabolic triple we shall also use 

dimensional reduction, although in an analytic way, since we do not have any longer an 

algebraic interpretation on X x pI .  So we shall consider the open manifold (X - S) x pl  

with the K~ihler form w,r. On this open manifold we have a holomorphic bundle F given by 

0 ~ p ' E l  - -+ F ~ p ' E 2  ® q*(.9(2) ~ 0, 

which is now defined by dPJx_s. 

By Proposition 5.1, we choose metrics hi and he on Ej and E2 such that iAFh~ + dpdp* 

and iAFh2 + ~*ep are bounded. These metrics induce a metric h on F such that 
(1) Fh E LP(p  > 1), 

(2) AFh isbounded, 

(3) h is SU(2)-equivariant. 

L e m m a  5.2. The SU(2)-equivariant L~ subsheaves o f F  over (X - S) x pl  are in 1-1 

correspondence with subtriples o f ( E l ,  E2, c19) over X (with the same degree). 

Proof. An SU(2)-equivariant LI 2 subsheaf of  F over (X - S) x p l  induces an LI 2 subtriple 

of  (El, E2, ~ )  over X - S. The L~ condition implies (see [UY]) that we have holomorphic 
subbundles over X - S and that these subbundles extend over X [Si, Lemma 10.6] with the 

right degree [Si, Lemma 10.5]. [] 

We deduce from Lemma 5.2 that F is equivariantly analytically stable over (X - S) × p l .  

We can now apply Simpson's theorem [Si, Theorem 1] to obtain a (unique) Hermitian- 

Einstein metric k on F, mutually bounded with h and SU(2)-equivariant ((1) and (2) are 

necessary in order to use Simpson's theorem). 

Hence as in [BGP] we get over X - S two metrics kl and k2 on El and E2, mutually 

bounded with h I and h2, such that 

iAFk~ + q~q~* = 27rrl let ,  iAFk2 - qb*~ = 2zrr2IE2. 

To finish we have to prove that these metrics are adapted to the parabolic structures. 

Since they are mutually bounded with hi and h2, we deduce that q ~ *  and ~*qb are 
in L p for some p > 1 and (from the equations) so are Fk~ and Fk2. By Theorem 2.2, the 

metrics kl and k2 are then adapted to E1 and E2 (their curvatures are is LP and they are 
mutually bounded with adapted metrics). 

In the process of proving Theorem 3.4 we have obtained the following. 

Theorem 5.3. There is a one-to-one correspondence between 

(1) irreducible SU (2)-equivariant anti-self-dual connections over ( X - S) × P 1 with L p- 

curvature, for  some p > 1 (modulo gauge transformations), 

and 
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(2) stable meromorphic parabolic triples over X - S (modulo isomorphisms). 

Moreover, the anti-self-dual connection has finite energy if  and only if  in the associ- 

ated triple ( E l ,  E2, ~ )  qb is a parabolic morphism, i.e. c19 E H°(79arT-[om(E2, El )). 

R e m a r k .  This  result  provides  with lots of  examples  o f  instantons of  infinite energy. 
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